Devoir surveillé de Mathématiques n°2

Exercice 1

Déterminer une primitive de la fonction $x \mapsto \frac{1}{\sqrt{x^2 - x + 1}}$ sous la forme $x \mapsto \operatorname{argsh}(ax + b)$, en déduire la valeur de l'intégrale $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x^2 - x + 1}}$.

Exercice 2

Dans le plan muni d'un repère orthonormal, on considère les points A(1;5), B(-3;1) et C(5;-1).

- 1. Déterminer une équation cartésienne des droites (BC), (AC) et (AB).
- 2. (a) Déterminer une équation cartésienne de chacune des hauteurs du triangle ABC.
 - (b) En déduire les coordonnées de l'orthocentre H du triangle ABC.
- 3. (a) Déterminer une équation cartésienne de chacune des médiatrices du triangle ABC.
 - (b) En déduire les coordonnées du centre Ω du cercle circonscrit du triangle ABC.

Exercice 3

On définit les fonctions f et g sur l'intervalle [0;1] par :

$$f(x) = \arccos x - \sqrt{2(1-x)}$$

$$g(x) = \arccos x - (2-x)\sqrt{2(1-x)}$$

- 1. Étudier les variations puis le signe des fonctions f et g sur l'intervalle [0;1].
- 2. En déduire $\lim_{x\to 1} \frac{\arccos x}{\sqrt{1-x^2}}$.

Exercice 4

Dans le plan complexe, on considère les ensembles de points :

$$C_1 : |z|^2 + 2 \Re e(z) = 0$$

 $C_2 : |z|^2 - 4 \Im m(z) = 0$

- 1. Montrer que C_1 et C_2 sont des cercles et déterminer leurs centres et leurs rayons respectifs Ω_1 , Ω_2 , R_1 et R_2 .
- 2. Déterminer les points d'intersection A et B de C_1 et C_2 .
- 3. (a) Montrer qu'il existe une unique similitude directe s_A de centre A transformant Ω_1 en Ω_2 et déterminer son écriture complexe.
 - (b) Montrer qu'il existe une unique similitude directe s_B de centre B transformant Ω_1 en Ω_2 et déterminer son écriture complexe.
- 4. On considère un point M(z) de C_1 .
 - (a) Calculer $\mathcal{I}m[(z_{s_A(M)}-z_B)\overline{(z-z_B)}]$ et $\mathcal{I}m[(z_{s_B(M)}-z_A)\overline{(z-z_A)}]$.
 - (b) En déduire une construction géométrique de $s_A(M)$ et $s_B(M)$.